Glycoursodeoxycholic acid and interleukin-10 modulate the reactivity of rat cortical astrocytes to unconjugated bilirubin.

نویسندگان

  • Adelaide Fernandes
  • Ana Rita Vaz
  • Ana S Falcão
  • Rui F M Silva
  • Maria A Brito
  • Dora Brites
چکیده

The pathogenesis of bilirubin encephalopathy seems to result from accumulation of unconjugated bilirubin (UCB) within the brain. We have recently demonstrated that UCB causes astroglial release of proinflammatory cytokines and glutamate, as well as cell death. The bile acid glycoursodeoxycholic acid (GUDCA) and the anti-inflammatory cytokine interleukin (IL)-10 have been reported to modulate inflammation and cell survival. In this study we investigated the effect of these therapeutic agents on the astroglial response to UCB. Only GUDCA prevented UCB-induced astroglial death. The secretion of tumor necrosis factor-alpha (TNF-alpha) and IL-1beta elicited by UCB in astrocytes was reduced in the presence of GUDCA and IL-10, whereas the suppression of IL-6 was only counteracted by GUDCA. Neither GUDCA nor IL-10 modulated the accumulation of extracellular glutamate. Additionally, IL-10 markedly inhibited UCB-induced nuclear factor-kappaB nuclear translocation and cytokine mRNA expression, whereas GUDCA only prevented TNF-alpha mRNA expression. Moreover, GUDCA inhibited TNF-alpha- and IL-1beta-converting enzymes, preventing the maturation of these cytokines and their consequent release. Collectively, this study shows that IL-10 action is restricted to UCB-induced release of TNF-alpha and IL-1beta from the astrocytes, whereas GUDCA presents a more ubiquitous action on the astroglial reactivity to UCB. Hence, GUDCA may have potential benefits over an IL-10 therapeutic approach in reducing UCB-induced astrocyte immunostimulation and death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes

Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...

متن کامل

Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro study

Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayer...

متن کامل

Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid.

It is well established that high levels of unconjugated bilirubin (UCB) can be toxic to the central nervous system, and oxidative stress is emerging as a relevant event in the mechanisms of UCB encephalopathy. In contrast, the hydrophilic bile acid, ursodeoxycholic acid (UDCA), has been reported as a cytoprotective and antioxidant molecule. In this study, we investigated if exposure of rat neur...

متن کامل

Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells.

Unconjugated bilirubin (UCB) encephalopathy is a predominantly early life condition resulting from the impairment of several cellular functions in the brain of severely jaundiced infants. However, only few data exist on the age-dependent effects of UCB and their association with increased vulnerability of premature newborns, particularly in a sepsis condition. We investigated cell death, glutam...

متن کامل

Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells.

We investigated whether nerve cell damage by unconjugated bilirubin (UCB) is mediated by oxidative stress and ascertained the neuronal and astroglial susceptibility to injury. Several oxidative stress biomarkers and cell death were determined following incubation of neurons and astrocytes isolated from rat cortical cerebrum with UCB (0.01-1.0 microM). We show that UCB induces a dose-dependent i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 2007